Conda安装Pytorch和CUDA/GCC与一些环境Bug解决
在实验室服务器上的时候,一般是没有 root 权限的,而服务器可能只安装了特定版本的 CUDA 和 GCC,我们就需要自己安装自己需要版本的 CUDA/GCC 来满足安装包时的环境要求。
而 Conda 除了安装 Python 的包以外,其还提供了很多其他库——比如CUDA、GCC甚至还有 COLMAP,那么我们就可以很方便的安装自己的环境的啦!
而官方的 Conda 比较慢,一般还得自己改 channel 到 conda-forge,所以推荐使用 Mamba 来替代,其比 Conda 更快,而且命令与 Conda 一致,只需把通常用的 conda
替换成 mamba
即可。安装地址:https://github.com/conda-forge/miniforge
1 快速安装环境
这里先附上各个版本Pytorch和CUDA的安装命令合集:
- Pytorch:https://pytorch.org/get-started/previous-versions/
- CUDA:https://anaconda.org/nvidia/cuda-toolkit
但是注意,不要直接使用里面的命令,要想获得良好的体验,请参考下面的例子:
一个简单的例子安装 Pytorch 2.3.0、CUDA 12.1、GCC/G++ 11.4:
安装 mamba(比 conda 更快)
wget "https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-$(uname)-$(uname -m).sh" bash Miniforge3-$(uname)-$(uname -m).sh
创建环境(注意:我这里修改了官方的 CUDA 版本 Pytorch 的安装命令,改变了channel 为
-c nvidia/label/cuda-12.1.0
)mamba create -n h_gs python=3.12 -y mamba activate h_gs mamba install pytorch==2.3.0 torchvision==0.18.0 torchaudio==2.3.0 pytorch-cuda=12.1 -c pytorch -c nvidia/label/cuda-12.1.0
安装 GCC/G++
mamba install gcc=11.4 mamba install gxx=11.4
安装 CUDA(注意:我这里修改了官方的 CUDA 安装命令,多了一个
-c nvidia/label/cuda-12.1.0
)mamba install nvidia/label/cuda-12.1.0::cuda-toolkit -c nvidia/label/cuda-12.1.0
可以看到以上操作有两个地方特别注意的 channel 修改,是因为混乱的 Conda 环境管理会导致原版命令出现 bug,具体情况请看第3节
Pytorch 安装的 channel 修改是为了使 pytorch-cuda 与之后我们安装的 CUDA 兼容
CUDA 安装的 channel 添加是为了防止其安装与版本不一样的其他CUDA库
安装 cuda-toolkit 即是安装很多个 CUDA 相关的库,直接使用官方命令安装会导致其首先查看在默认频道并安装最新版本,而不是
nvidia/label/cuda-12.1.0
中的软件包,就会安装一些最新版本的 CUDA 库,有一定出 bug 的风险。
2 环境路径问题
注意:Conda 的 CUDA,经常出现找不到 CUDA 环境的问题,以下操作可以通过将环境变量设置为激活步骤的一部分:
进入Conda环境目录并创建以下子目录和文件
cd $CONDA_PREFIX mkdir -p ./etc/conda/activate.d mkdir -p ./etc/conda/deactivate.d touch ./etc/conda/activate.d/env_vars.sh touch ./etc/conda/deactivate.d/env_vars.sh
编辑
./etc/conda/activate.d/env_vars.sh
如下#!/bin/sh export CUDA_HOME=$CONDA_PREFIX export LD_LIBRARY_PATH=$CONDA_PREFIX/lib:$LD_LIBRARY_PATH
编辑
./etc/conda/deactivate.d/env_vars.sh
如下#!/bin/sh unset CUDA_HOME unset LD_LIBRARY_PATH
当运行 mamba activate analytics
时,环境变量 CUDA_HOME
和 LD_LIBRARY_PATH
将设置为写入文件的值。当运行 mamba deactivate
时,这些环境变量将被删除。
这样确保了 Conda 环境激活的时候,程序可以正确找到 Conda 安装的包/库的位置
3 各种 Bug
3.1 undefined symbol: iJIT_NotifyEvent
https://github.com/pytorch/pytorch/issues/123097
在以下环境时 import torch
发生的bug:
mamba install pytorch==2.0.0 torchvision==0.15.0 torchaudio==2.0.0 pytorch-cuda=11.8 -c pytorch -c nvidia
mamba install nvidia/label/cuda-11.8.0::cuda-toolkit -c nvidia/label/cuda-11.8.0
此时的 mkl=2024.2.2
,我们将其降级为 mkl=2024.0
mamba install mkl==2024.0
3.2 ld: cannot find -lcudart
我们使用第1节的原版命令(没有修改 channel)的流程安装pytorch和CUDA环境之后,要用 Conda 的 CUDA 环境进行某个库编译时,出现了bug:
/mnt/data/home/wangjiawei/miniforge3/envs/GAGAvatar/compiler_compat/ld: cannot find -lcudart: No such file or directory
collect2: error: ld returned 1 exit status
error: command '/mnt/data/home/wangjiawei/miniforge3/envs/GAGAvatar/bin/g++' failed with exit code 1
[end of output]
note: This error originates from a subprocess, and is likely not a problem with pip.
ERROR: Failed building wheel for diff_gaussian_rasterization_32d
Running setup.py clean for diff_gaussian_rasterization_32d
Failed to build diff_gaussian_rasterization_32d
ERROR: ERROR: Failed to build installable wheels for some pyproject.toml based projects (diff_gaussian_rasterization_32d)
❯ which nvcc
/mnt/data/home/wangjiawei/miniforge3/envs/GAGAvatar/bin/nvcc
❯ echo $CUDA_HOME
/mnt/data/home/wangjiawei/miniforge3/envs/GAGAvatar
❯ echo $PATH
/home/wangjiawei/local/bin:/home/wangjiawei/local/bin:/mnt/data/home/wangjiawei/miniforge3/envs/GAGAvatar/bin:/mnt/data/home/wangjiawei/miniforge3/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
❯ echo $LD_LIBRARY_PATH
/mnt/data/home/wangjiawei/miniforge3/envs/GAGAvatar/lib:
去探查发现,这里的软链接出了问题:
❯ ls /mnt/data/home/wangjiawei/miniforge3/envs/GAGAvatar/lib
libcudart.so -> libcudart.so.12.1.55
libcudart.so.12
libcudart.so.12.1.105
继续探究发现,安装Pytorch时会安装 cuda-cudart=12.1.105
以下是按照Pytorch时会安装的所有以 pytorch
、 nvidia
为 channel 的包:
+ pytorch-mutex 1.0 cuda pytorch Cached
+ libcublas 12.1.0.26 0 nvidia Cached
+ libcufft 11.0.2.4 0 nvidia Cached
+ libcusolver 11.4.4.55 0 nvidia Cached
+ libcusparse 12.0.2.55 0 nvidia Cached
+ libnpp 12.0.2.50 0 nvidia Cached
+ cuda-cudart 12.1.105 0 nvidia Cached
+ cuda-nvrtc 12.1.105 0 nvidia Cached
+ libnvjitlink 12.1.105 0 nvidia Cached
+ libnvjpeg 12.1.1.14 0 nvidia Cached
+ cuda-cupti 12.1.105 0 nvidia Cached
+ cuda-nvtx 12.1.105 0 nvidia Cached
+ ffmpeg 4.3 hf484d3e_0 pytorch Cached
+ libjpeg-turbo 2.0.0 h9bf148f_0 pytorch Cached
+ cuda-version 12.6 3 nvidia Cached
+ libcurand 10.3.7.77 0 nvidia Cached
+ libcufile 1.11.1.6 0 nvidia Cached
+ cuda-opencl 12.6.77 0 nvidia Cached
+ cuda-libraries 12.1.0 0 nvidia Cached
+ cuda-runtime 12.1.0 0 nvidia Cached
+ pytorch-cuda 12.1 ha16c6d3_6 pytorch Cached
+ pytorch 2.4.1 py3.12_cuda12.1_cudnn9.1.0_0 pytorch Cached
+ torchtriton 3.0.0 py312 pytorch Cached
+ torchaudio 2.4.1 py312_cu121 pytorch Cached
+ torchvision 0.19.1 py312_cu121 pytorch Cached
而这是安装 cuda-toolkit-12.1.0
的包:
+ cuda-documentation 12.1.55 0 nvidia/label/cuda-12.1.0 Cached
+ cuda-nvml-dev 12.1.55 0 nvidia/label/cuda-12.1.0 Cached
+ libnvvm-samples 12.1.55 0 nvidia/label/cuda-12.1.0 Cached
+ cuda-cccl 12.1.55 0 nvidia/label/cuda-12.1.0 Cached
+ cuda-driver-dev 12.1.55 0 nvidia/label/cuda-12.1.0 Cached
+ cuda-profiler-api 12.1.55 0 nvidia/label/cuda-12.1.0 Cached
+ cuda-cudart 12.1.55 0 nvidia/label/cuda-12.1.0 Cached
+ cuda-nvrtc 12.1.55 0 nvidia/label/cuda-12.1.0 21MB
+ cuda-opencl 12.1.56 0 nvidia/label/cuda-12.1.0 11kB
+ libcublas 12.1.0.26 0 nvidia/label/cuda-12.1.0 Cached
+ libcufft 11.0.2.4 0 nvidia/label/cuda-12.1.0 Cached
+ libcufile 1.6.0.25 0 nvidia/label/cuda-12.1.0 782kB
+ libcurand 10.3.2.56 0 nvidia/label/cuda-12.1.0 54MB
+ libcusolver 11.4.4.55 0 nvidia/label/cuda-12.1.0 Cached
+ libcusparse 12.0.2.55 0 nvidia/label/cuda-12.1.0 Cached
+ libnpp 12.0.2.50 0 nvidia/label/cuda-12.1.0 Cached
+ libnvjitlink 12.1.55 0 nvidia/label/cuda-12.1.0 18MB
+ libnvjpeg 12.1.0.39 0 nvidia/label/cuda-12.1.0 3MB
+ cuda-cupti 12.1.62 0 nvidia/label/cuda-12.1.0 5MB
+ cuda-cuobjdump 12.1.55 0 nvidia/label/cuda-12.1.0 Cached
+ cuda-cuxxfilt 12.1.55 0 nvidia/label/cuda-12.1.0 Cached
+ cuda-nvcc 12.1.66 0 nvidia/label/cuda-12.1.0 Cached
+ cuda-nvprune 12.1.55 0 nvidia/label/cuda-12.1.0 Cached
+ cuda-gdb 12.1.55 0 nvidia/label/cuda-12.1.0 Cached
+ cuda-nvdisasm 12.1.55 0 nvidia/label/cuda-12.1.0 Cached
+ cuda-nvprof 12.1.55 0 nvidia/label/cuda-12.1.0 Cached
+ cuda-nvtx 12.1.66 0 nvidia/label/cuda-12.1.0 58kB
+ cuda-sanitizer-api 12.1.55 0 nvidia/label/cuda-12.1.0 Cached
+ cuda-nsight 12.1.55 0 nvidia/label/cuda-12.1.0 Cached
+ nsight-compute 2023.1.0.15 0 nvidia/label/cuda-12.1.0 Cached
+ cuda-cudart-dev 12.1.55 0 nvidia/label/cuda-12.1.0 Cached
+ cuda-nvrtc-dev 12.1.55 0 nvidia/label/cuda-12.1.0 Cached
+ cuda-opencl-dev 12.1.56 0 nvidia/label/cuda-12.1.0 Cached
+ libcublas-dev 12.1.0.26 0 nvidia/label/cuda-12.1.0 Cached
+ libcufft-dev 11.0.2.4 0 nvidia/label/cuda-12.1.0 Cached
+ gds-tools 1.6.0.25 0 nvidia/label/cuda-12.1.0 Cached
+ libcufile-dev 1.6.0.25 0 nvidia/label/cuda-12.1.0 Cached
+ libcurand-dev 10.3.2.56 0 nvidia/label/cuda-12.1.0 Cached
+ libcusolver-dev 11.4.4.55 0 nvidia/label/cuda-12.1.0 Cached
+ libcusparse-dev 12.0.2.55 0 nvidia/label/cuda-12.1.0 Cached
+ libnpp-dev 12.0.2.50 0 nvidia/label/cuda-12.1.0 Cached
+ libnvjitlink-dev 12.1.55 0 nvidia/label/cuda-12.1.0 Cached
+ libnvjpeg-dev 12.1.0.39 0 nvidia/label/cuda-12.1.0 Cached
+ cuda-libraries 12.1.0 0 nvidia/label/cuda-12.1.0 Cached
+ cuda-cupti-static 12.1.62 0 nvidia/label/cuda-12.1.0 Cached
+ cuda-compiler 12.1.0 0 nvidia/label/cuda-12.1.0 Cached
+ cuda-nvvp 12.1.55 0 nvidia/label/cuda-12.1.0 Cached
+ cuda-command-line-tools 12.1.0 0 nvidia/label/cuda-12.1.0 Cached
+ cuda-nsight-compute 12.1.0 0 nvidia/label/cuda-12.1.0 Cached
+ cuda-cudart-static 12.1.55 0 nvidia/label/cuda-12.1.0 Cached
+ cuda-nvrtc-static 12.1.55 0 nvidia/label/cuda-12.1.0 Cached
+ libcublas-static 12.1.0.26 0 nvidia/label/cuda-12.1.0 Cached
+ libcufft-static 11.0.2.4 0 nvidia/label/cuda-12.1.0 Cached
+ libcufile-static 1.6.0.25 0 nvidia/label/cuda-12.1.0 Cached
+ libcurand-static 10.3.2.56 0 nvidia/label/cuda-12.1.0 Cached
+ libcusolver-static 11.4.4.55 0 nvidia/label/cuda-12.1.0 Cached
+ libcusparse-static 12.0.2.55 0 nvidia/label/cuda-12.1.0 Cached
+ libnpp-static 12.0.2.50 0 nvidia/label/cuda-12.1.0 Cached
+ libnvjpeg-static 12.1.0.39 0 nvidia/label/cuda-12.1.0 Cached
+ cuda-libraries-dev 12.1.0 0 nvidia/label/cuda-12.1.0 Cached
+ cuda-libraries-static 12.1.0 0 nvidia/label/cuda-12.1.0 Cached
+ cuda-visual-tools 12.1.0 0 nvidia/label/cuda-12.1.0 Cached
+ cuda-tools 12.1.0 0 nvidia/label/cuda-12.1.0 Cached
+ cuda-toolkit 12.1.0 0 nvidia/label/cuda-12.1.0 Cached
这是安装 cuda-toolkit-12.1.1
的包:
+ cuda-documentation 12.1.105 0 nvidia/label/cuda-12.1.1 91kB
+ cuda-nvml-dev 12.1.105 0 nvidia/label/cuda-12.1.1 87kB
+ libnvvm-samples 12.1.105 0 nvidia/label/cuda-12.1.1 33kB
+ cuda-cccl 12.1.109 0 nvidia/label/cuda-12.1.1 1MB
+ cuda-driver-dev 12.1.105 0 nvidia/label/cuda-12.1.1 17kB
+ cuda-profiler-api 12.1.105 0 nvidia/label/cuda-12.1.1 19kB
+ cuda-cudart 12.1.105 0 nvidia/label/cuda-12.1.1 Cached
+ cuda-nvrtc 12.1.105 0 nvidia/label/cuda-12.1.1 Cached
+ cuda-opencl 12.1.105 0 nvidia/label/cuda-12.1.1 11kB
+ libcublas 12.1.3.1 0 nvidia/label/cuda-12.1.1 367MB
+ libcufft 11.0.2.54 0 nvidia/label/cuda-12.1.1 108MB
+ libcufile 1.6.1.9 0 nvidia/label/cuda-12.1.1 783kB
+ libcurand 10.3.2.106 0 nvidia/label/cuda-12.1.1 54MB
+ libcusolver 11.4.5.107 0 nvidia/label/cuda-12.1.1 116MB
+ libcusparse 12.1.0.106 0 nvidia/label/cuda-12.1.1 177MB
+ libnpp 12.1.0.40 0 nvidia/label/cuda-12.1.1 147MB
+ libnvjitlink 12.1.105 0 nvidia/label/cuda-12.1.1 Cached
+ libnvjpeg 12.2.0.2 0 nvidia/label/cuda-12.1.1 3MB
+ cuda-cupti 12.1.105 0 nvidia/label/cuda-12.1.1 Cached
+ cuda-cuobjdump 12.1.111 0 nvidia/label/cuda-12.1.1 245kB
+ cuda-cuxxfilt 12.1.105 0 nvidia/label/cuda-12.1.1 302kB
+ cuda-nvcc 12.1.105 0 nvidia/label/cuda-12.1.1 55MB
+ cuda-nvprune 12.1.105 0 nvidia/label/cuda-12.1.1 67kB
+ cuda-gdb 12.1.105 0 nvidia/label/cuda-12.1.1 6MB
+ cuda-nvdisasm 12.1.105 0 nvidia/label/cuda-12.1.1 50MB
+ cuda-nvprof 12.1.105 0 nvidia/label/cuda-12.1.1 5MB
+ cuda-nvtx 12.1.105 0 nvidia/label/cuda-12.1.1 Cached
+ cuda-sanitizer-api 12.1.105 0 nvidia/label/cuda-12.1.1 18MB
+ cuda-nsight 12.1.105 0 nvidia/label/cuda-12.1.1 119MB
+ nsight-compute 2023.1.1.4 0 nvidia/label/cuda-12.1.1 808MB
+ cuda-cudart-dev 12.1.105 0 nvidia/label/cuda-12.1.1 381kB
+ cuda-nvrtc-dev 12.1.105 0 nvidia/label/cuda-12.1.1 12kB
+ cuda-opencl-dev 12.1.105 0 nvidia/label/cuda-12.1.1 59kB
+ libcublas-dev 12.1.3.1 0 nvidia/label/cuda-12.1.1 76kB
+ libcufft-dev 11.0.2.54 0 nvidia/label/cuda-12.1.1 14kB
+ gds-tools 1.6.1.9 0 nvidia/label/cuda-12.1.1 43MB
+ libcufile-dev 1.6.1.9 0 nvidia/label/cuda-12.1.1 13kB
+ libcurand-dev 10.3.2.106 0 nvidia/label/cuda-12.1.1 460kB
+ libcusolver-dev 11.4.5.107 0 nvidia/label/cuda-12.1.1 51kB
+ libcusparse-dev 12.1.0.106 0 nvidia/label/cuda-12.1.1 178MB
+ libnpp-dev 12.1.0.40 0 nvidia/label/cuda-12.1.1 525kB
+ libnvjitlink-dev 12.1.105 0 nvidia/label/cuda-12.1.1 15MB
+ libnvjpeg-dev 12.2.0.2 0 nvidia/label/cuda-12.1.1 13kB
+ cuda-libraries 12.1.1 0 nvidia/label/cuda-12.1.1 2kB
+ cuda-cupti-static 12.1.105 0 nvidia/label/cuda-12.1.1 12MB
+ cuda-compiler 12.1.1 0 nvidia/label/cuda-12.1.1 1kB
+ cuda-nvvp 12.1.105 0 nvidia/label/cuda-12.1.1 120MB
+ cuda-command-line-tools 12.1.1 0 nvidia/label/cuda-12.1.1 1kB
+ cuda-nsight-compute 12.1.1 0 nvidia/label/cuda-12.1.1 1kB
+ cuda-cudart-static 12.1.105 0 nvidia/label/cuda-12.1.1 948kB
+ cuda-nvrtc-static 12.1.105 0 nvidia/label/cuda-12.1.1 18MB
+ libcublas-static 12.1.3.1 0 nvidia/label/cuda-12.1.1 389MB
+ libcufft-static 11.0.2.54 0 nvidia/label/cuda-12.1.1 199MB
+ libcufile-static 1.6.1.9 0 nvidia/label/cuda-12.1.1 3MB
+ libcurand-static 10.3.2.106 0 nvidia/label/cuda-12.1.1 55MB
+ libcusolver-static 11.4.5.107 0 nvidia/label/cuda-12.1.1 76MB
+ libcusparse-static 12.1.0.106 0 nvidia/label/cuda-12.1.1 185MB
+ libnpp-static 12.1.0.40 0 nvidia/label/cuda-12.1.1 143MB
+ libnvjpeg-static 12.2.0.2 0 nvidia/label/cuda-12.1.1 3MB
+ cuda-libraries-dev 12.1.1 0 nvidia/label/cuda-12.1.1 2kB
+ cuda-libraries-static 12.1.1 0 nvidia/label/cuda-12.1.1 2kB
+ cuda-visual-tools 12.1.1 0 nvidia/label/cuda-12.1.1 1kB
+ cuda-tools 12.1.1 0 nvidia/label/cuda-12.1.1 1kB
+ cuda-toolkit 12.1.1 0 nvidia/label/cuda-12.1.1 2kB
对比发现是 cuda-12.1.1
才对的上CUDA版本12.1的Pytorch。但是我们在安装的时候,先安装CUDA版本12.1的Pytorch,再安装 cuda-12.1.1
会出现冲突问题:
└─ pytorch-cuda is not installable because it requires
└─ libcublas >=12.1.0.26,<12.1.3.1 , which conflicts with any installable versions previously reported.
也就是说,该死的CUDA版本12.1的Pytorch的 libcublas
需要适配 cuda-toolkit-12.1.0
,但是其的 cuda-cudart
等库又需要适配 cuda-toolkit-12.1.1
可以看到 pytorch-cuda 强要求 libcublas >=12.1.0.26,<12.1.3.1
,我们只好迁就 pytorch,安装12.1.0的CUDA,但是呢!我们可以修改Pytorch官方给出的 nvidia
channel 为 nvidia/label/cuda-12.1.0
使用以下命令:
mamba install pytorch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 pytorch-cuda=12.1 -c pytorch -c nvidia/label/cuda-12.1.0
其就会安装与我们安装的 cuda-toolkit-12.1.0
一样的一些 cuda 库了!
+ pytorch-mutex 1.0 cuda pytorch Cached
+ libcublas 12.1.0.26 0 nvidia/label/cuda-12.1.0 Cached
+ libcufft 11.0.2.4 0 nvidia/label/cuda-12.1.0 Cached
+ libcusolver 11.4.4.55 0 nvidia/label/cuda-12.1.0 Cached
+ libcusparse 12.0.2.55 0 nvidia/label/cuda-12.1.0 Cached
+ libnpp 12.0.2.50 0 nvidia/label/cuda-12.1.0 Cached
+ libnvjpeg 12.1.0.39 0 nvidia/label/cuda-12.1.0 3MB
+ cuda-cudart 12.1.55 0 nvidia/label/cuda-12.1.0 Cached
+ cuda-nvrtc 12.1.55 0 nvidia/label/cuda-12.1.0 21MB
+ cuda-opencl 12.1.56 0 nvidia/label/cuda-12.1.0 11kB
+ libcufile 1.6.0.25 0 nvidia/label/cuda-12.1.0 782kB
+ libcurand 10.3.2.56 0 nvidia/label/cuda-12.1.0 54MB
+ cuda-cupti 12.1.62 0 nvidia/label/cuda-12.1.0 5MB
+ cuda-nvtx 12.1.66 0 nvidia/label/cuda-12.1.0 58kB
+ cuda-version 12.1 h1d6eff3_3 conda-forge 21kB
+ ffmpeg 4.3 hf484d3e_0 pytorch Cached
+ libjpeg-turbo 2.0.0 h9bf148f_0 pytorch Cached
+ libnvjitlink 12.1.105 hd3aeb46_0 conda-forge 16MB
+ cuda-libraries 12.1.0 0 nvidia/label/cuda-12.1.0 Cached
+ cuda-runtime 12.1.0 0 nvidia/label/cuda-12.1.0 Cached
+ pytorch-cuda 12.1 ha16c6d3_6 pytorch Cached
+ pytorch 2.4.1 py3.12_cuda12.1_cudnn9.1.0_0 pytorch Cached
+ torchtriton 3.0.0 py312 pytorch Cached
+ torchvision 0.19.1 py312_cu121 pytorch Cached
+ torchaudio 2.4.1 py312_cu121 pytorch Cached
到这里,问题就解决了:我们之后要安装 pytorch-cuda 和 cuda-toolkit 时,只需要执行以下命令(顺序应该不重要了):
mamba install pytorch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 pytorch-cuda=12.1 -c pytorch -c nvidia/label/cuda-12.1.0
mamba install nvidia/label/cuda-12.1.0::cuda-toolkit -c nvidia/label/cuda-12.1.0
安装 cuda-toolkit 就相当于在安装完 pytorch-cuda 的需要的部分 cuda 库后,进行了补充安装,都是同一个 channel 的当然就不会有问题了
3.3 libstdc++.so.6: version `GLIBCXX_3.4.29' not found
在 conda 环境安装 gcc/gxx 之后,运行开始遇到了以下的报错
File "/mnt/data/home/wangjiawei/miniforge3/envs/GAGAvatar/lib/python3.12/site-packages/google/protobuf/internal/wire_format.py", line 13, in <module>
from google.protobuf import descriptor
File "/mnt/data/home/wangjiawei/miniforge3/envs/GAGAvatar/lib/python3.12/site-packages/google/protobuf/descriptor.py", line 28, in <module>
from google.protobuf.pyext import _message
ImportError: /usr/lib/x86_64-linux-gnu/libstdc++.so.6: version `GLIBCXX_3.4.29' not found (required by /mnt/data/home/wangjiawei/miniforge3/envs/GAGAvatar/lib/python3.12/site-packages/google/protobuf/pyext/_message.cpython-312-x86_64-linux-gnu.so)`
排查发现:
在 conda 环境中找不到 libstdc++.so.6
!不过能找到 libstdc++.so.6.0.33
❯ strings /mnt/data/home/wangjiawei/miniforge3/envs/GAGAvatar/lib/libstdc++.so.6 | grep GLIBCXX
strings: '/mnt/data/home/wangjiawei/miniforge3/envs/GAGAvatar/lib/libstdc++.so.6': No such file
❯ ls /mnt/data/home/wangjiawei/miniforge3/envs/GAGAvatar/lib/libstdc++*
/mnt/data/home/wangjiawei/miniforge3/envs/GAGAvatar/lib/libstdc++.so.6.0.33
看来是软链接出了问题,我尝试了重新在 conda 环境安装 gcc/gxx,但是始终无法解决软链接问题,而且在卸载之后,这个 libstdc++.so.6.0.33
依旧存在,看来是某个库的问题。
这样太难排查了,所以直接采取最简单的办法——自己手动软链接:
ln -s /mnt/data/home/wangjiawei/miniforge3/envs/GAGAvatar/x86_64-conda-linux-gnu/lib/libstdc++.so.so.6.0.33 \
/mnt/data/home/wangjiawei/miniforge3/envs/GAGAvatar/lib/libstdc++.so.6
问题暂时解决😋
参考
https://stackoverflow.com/questions/72684130/how-to-set-the-cuda-path-in-the-conda-environment
https://stackoverflow.com/questions/78484090/conda-cuda12-incompatibility/78843983#78843983